Extractive text summarization for scientific journal articles using long short-term memory and gated recurrent units

نویسندگان

چکیده

Along with the increasing number of scientific publications, many communities must read entire text to get essence information from a journal article. This will be quite inconvenient if article is long and there are more than one journals. Motivated by this problem, encourages need for method summarization that can automatically, concisely, accurately summarize document. The purpose research create an extractive doing feature engineering extract semantic original text. Comparing short-term memory algorithm gated recurrent units were used most relevant sentences served as summary. results showed both algorithms yielded relatively similar accuracy results, at 98.40% 98.68%. evaluation matrix recall-oriented understudy gisting (ROUGE) evaluate summary results. produced LSTM model compared using latent analysis (LSA) then obtained recall values ROUGE-1, ROUGE-2, ROUGE-L respectively 76.25%, 59.49%, 72.72%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Argumentative Zones for Extractive Summarization of Scientific Articles

Information structure, i.e the way speakers construct sentences to present new information in the context of old, can capture rich linguistic information about the discourse structure of scientific documents. Information structure has been found useful for important Natural Language Processing (NLP) tasks, such as information retrieval and extraction. Since scientific articles typically follow ...

متن کامل

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Video Summarization with Long Short-Term Memory

We propose a novel supervised learning technique for summarizing videos by automatically selecting keyframes or key subshots. Casting the problem as a structured prediction problem on sequential data, our main idea is to use Long Short-Term Memory (LSTM), a special type of recurrent neural networks to model the variable-range dependencies entailed in the task of video summarization. Our learnin...

متن کامل

Extractive Text Summarization using Neural Networks

Text Summarization has been an extensively studied problem. Traditional approaches to text summarization rely heavily on feature engineering. In contrast to this, we propose a fully data-driven approach using feedforward neural networks for single document summarization. We train and evaluate the model on standard DUC 2002 dataset which shows results comparable to the state of the art models. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of Electrical Engineering and Informatics

سال: 2022

ISSN: ['2302-9285']

DOI: https://doi.org/10.11591/eei.v11i1.3278